Volt Drop Table

Current carrying capacities and associated voltage drops for twin and multicore P.V.C insulated cables, non-armoured (copper conductors).

BS6006 & BS6346

Conductor operating temperature 70°C

	('enclosed')				Installation	n methods E to dire		A ('Clipped	Installation method K of table 9A ('Defined conditions')				
Conductor cross sectional area	One twin con with protection conductors phase a/c. O	thout ctive or single ise	One three-core cable, with or without protective conductor, or one four core cable phase one		One twin cable. With or without protective conductor single phase a.c. Or d.c.		One three-core cable, with or without protective conductor, or one four core cable phase one		One twin cable. With or without protective conductor single phase a.c. or d.c.		One three-core cable with or without protective conductor or one four core cable phase one		
	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metre	Current carrying capacity	Volt drop per amp per metr	
1	2	3	4	5	6	7	8	9	10	11	12	13	
mm²	А	mV	А	mV	Α	mV	А	mV	Α	mV	А	mV	
1.0	14	42	12	37	16	42	13	37					
1.5	18	28	16	24	20	28	17	24					
2.5	24	17	21	15	28	17	24	15					
4	32	11	29	9.2	36	11	32	9.2					
6	40	7.1	36	6.2	46	7.1	40	6.2					
10	53	4.2	49	3.7	64	4.2	53	3.7					
16	70	2.7	62	2.3	85	2.7	70	2.3					
25	79	1.8	70	1.6	108	1.8	90	1.6	114	1.8	95	1.6	
35	98	1.3	86	1.1	132	1.3	115	1.1	139	1.3	122	1.1	
50					163	0.92	140	0.81	172	0.92	148	0.81	
	1	1	ı	1	ı	Ac / Dc		ı	ı	Ac / Dc			
70					207	0.65/0.64	176	0.57	218	0.65/0.64	186	0.57	
95					251	0.48/0.46	215	0.42	265	0.48/0.46	227	0.42	
120					200	0.40/0.36	251	0.24	306	0.40/0.36	265	0.24	
120					290	0.40/0.36	251	0.34	306	0.40/0.36	265	0.34	
150					330	0.32/0.25	287 330	0.29	348 400	0.32/0.25	302 348	0.29	
240					450	0.25/0.23	392	0.24	474	0.25/0.18	413	0.24	
300					520	0.23/0.18	450	0.20	548	0.23/0.14	474	0.20	
400					600	0.23/0.14	520	0.18	632	0.23/0.14	548	0.18	
400					000	0.22/0.11	320	0.17	032	0.22/0.11	340	0.17	

⁺ For installation Method C, the tabulated values are applicable only to the range up to and including 35mm². For larger sizes in this installation method, see ERA report 69-30. For cables in ducts in the floor of a building, the ERA ratings must be adjusted by the appropriate factor for the ambient temperature.

The current carrying capacities in columns 6 and 8 are applicable to flexible cables to BS 6004 Table 1(b) where the cables are used in fixed installations.

Correction Factors

For Ambient Temperature

Ambient temperature	25°C	35°C	40°C	45°C	50°C	55°C	60°C	65°C
Correction factor	1.06	0.94	0.87	0.79	0.71	0.61	0.50	0.35

Technical Information

Sample Formulae for the Volt Drop Table

FORMULA = LENGTH X VOLT DRO	P X AMPS = VOLT	DROP OVER L	ENGTH
0 mm TWIN CABLE FORMULA = 42 MV PER AMP PER METER			
10 metres at 5 amp with 1.0mm twin =	10 x 5 x 42 =	2100 mv 1000	2.1 volts
20 metres at 5 amp with 1.0mm twin =	20 x 5 x 42 =	4200 MV 1000	4.2 volts
30 metres at 5 amp with 1.0mm twin =	30 x 5 x 42 =	6300 MV 1000	6.3 volts
50 metres at 5 amp with 1.0mm twin =	50 x 5 x 42 =	10500 MV 1000	10.5 volts
75 metres at 5 amp with 1.0mm twin =	75 x 5 x 42 =	15750 MV 1000	15.7 volts
100 metres at 5 amp with 1.0mm twin =	100 x 5 x 42 =	21000 MV 1000	21 volts
5 mm TWIN CABLE FORMULA = 28 MV PER AMP PER METER			
10 metres at 5 amp with 1.5mm twin =	10 x 5 x 28 =	1400 MV 1000	1.4 volts
20 metres at 5 amp with 1.5mm twin =	20 x 5 x 28 =	2800 MV 1000	2.8 volts
30 metres at 5 amp with 1.5mm twin =	30 x 5 x 28 =	4200 MV 1000	4.2 volts
50 metres at 5 amp with 1.5mm twin =	50 x 5 x 28 =	7000 MV 1000	7.0 volts
75 metres at 5 amp with 1.5mm twin =	75 x 5 x 28 =	10500 MV 1000	10.5 volts
100 metres at 5 amp with 1.5mm twin =	100 x 5 x 28 =	14000 MV 1000	14.0 volts
5 mm TWIN CABLE FORMULA + 18mv PER AMP PER METER			
10 metres at 5 amp with 2.5mm twin =	10 x 5 x 17 =	850 MV 1000	0.85 volts
20 metres at 5 amp with 2.5mm twin =	20 x 5 x 17 =	1700 MV 1000	1.7 volts
30 metres at 5 amp with 2.5mm twin =	30 x 5 x 17 =	2500 MV 1000	2.5 volts
50 metres at 5 amp with 2.5mm twin =	50 x 5 x 17 =	4250 MV 1000	4.2 volts
75 metres at 5 amp with 2.5mm twin =	75 x 5 x 17 =	6375 MV 1000	6.3 volts
100 metres at 5 amp with 2.5mm twin =	100 x 5 x 17 =	8500 MV 1000	8.5 volts

MINIATURE CIRCUIT BREAKERS FOR USE IN CONJUNCTION WITH MOTOR STARTERS AND TRANSFORMERS

	Table 2-1 phase 240V AC DOL starting										
Motor starters	KW	Нр	Running	С60Н	С60НС	C60HD	NC100C	NC100D			
general miniature circuit reakers can give only short	0.12	0.166	0.55	2	1	1					
rcuit protection to motor ads due to high starting	0.18	0.25	0.7	2	1	1					
urrents which may be ncountered: typically 3 to 12	0.25	0.33	0.87	2	2	1					
mes full load current (FLC)	0.37	0.5	1.35	4	2	2					
ssumptions he tables give recommended	0.55	0.75	1.55	4	2	2					
ncb ratings for motors up to 7kW based on the following	0.75	1	1.93	6	4	2					
ssumptions:	1.1	1.5	2.5	6	4	4					
irect on-line starting	1.5	2	3.5	10	5	6					
tarting current = 7 x FLC un up time =	2.2	3	4.8	16	10	10	10	10			
seconds, motors < 3 kW 0 seconds, motors < 22 kW	3	4	6.4	16	16	10	16	10			
unning currents = average alues only	3.75	5	7.8	20	20	16	20	16			
individual manufacturers gures may vary)	4	5.5	8.1	25	20	16	20	16			
our pole motors i.e. speed pprox.	5.5	7.5	11	25	25	16	25	16			
500 rev/min.	7.5	10	14.4	32	25	20	25	20			
or Higher inertia loads i.e.	9.33	12.5	17.3	40	32	20	32	20			
oists and fans run up times naybe considerably longer	11	15	21	50	40	25	40	25			
han those assumed above. he rating of the mcb must	13	17.5	25	63	50	32	50	32			
ake account of the greater un-up time and starting	15	20	28	63	50	40	50	40			
urrent. The required mcb	18.5	25	35		63	50	63	50			
eference to time/current	22	30	40		63	50	63	50			
urves (consult us)	30	40	54			63	80	63			
tar/ delta starting ince, during the changeover	37	50	65.5				100	80			
om star to delta, a high urrent surge in the order of OL values may be met, the ncb rating selected should be	Table 2-1 phase 240V AC DOL starting										
he same as that ecommended for DOL	KW	Нр	Running	С60Н	С60НС	C60HD	NC100C	NC100D			
tarting	0.12	0.166	0.95	2	2	1					
	0.18	0.25	1.5	4	2	2					
	0.25	0.33	1.7	6	2	2					
	0.37	0.5	3	10	6	4					
	0.55	0.75	4.5	16	10	6	10				
	0.75	1	5.5	16	16	10	16	10			
	1.1	1.5	8.5	20	20	16	20	16			
	1.5	2	10.5	25	25	20	25	20			
	2.2	3	15.5	32	32	25	32	25			
	3	4	20	40	40	32	40	32			

7.5

8.5

5.5

6.3

7.5

36.5

66.5

Technical Information

	VA	Primary in (A)	С60Н	С60НС	С60НД	NC100C	NC100D			
Transformers High inrush currents are also	500	0.7	4	2	1					
produced when transformers	750	1.04	6	4	2					
are switched on. Typically 10-15 times full load current.	1000	1.39	6	4	2					
Assumptions	2000	2.78	10	10	6	10				
The tables give recommended ncb ratings for single phase	5000	6.95	32	16	10	16	10			
ransformers up to 12500 VA and three phase transformers	10000	13.89	50	32	20	32	20			
up to 30000 VA on the ollowing formula.	15000	20.84		50	32	50	32			
1cb rating	20000	27.78		53	40	63	40			
.5 x normal current of ransformer	25000	34.73			50	80	50			
nin instantaneous tripping	30000	41.67			63	80	63			
ic efficient of fried	Table 4 - 1 phase transformers 240V AC supply									
	VA	Primary in (A)	Сбон	С60НС	C60HD	NC100C	NC100D			
	50	0.21	1							
	100	0.42	2	1	1					
	250	1.04	6	4	2					
	500	2.08	10	6	4					
	1000	4.17	20	10	10	10	10			
	2500	10.42	40	25	16	25	16			
	5000	20.84		50	32	50	32			
	10000	41.67			63	80	63			

Ohms Law

IF YOU KNOW	NEED TO KNOW
VOLTS ÷ RESISTANCE	= AMPS
VOLTS ÷ AMPS	= RESISTANCE
VOLTS x AMPS	= WATTS
WATTS ÷ AMPS	= VOLTS
WATTS ÷ VOLTS	= AMPS
AMPS x RESISTANCE	= VOLTS

CABLE LENGTH RESISTANCE		CURRENT DRAWN		
Ohms			=	VOLT DROP
		AMPS OR M/AMPS		